Emerging Role of Lutein Across the Life Span
Part 1 – Focus on the Infant
Lisa M. Renzi, Ph.D.
Principal Investigator,
Human Biofactors Laboratory
The University of Georgia

Presented at The American Dietetic Association
Food & Nutrition Conference & Expo
September 24, 2011
© 2012 Abbott Laboratories

Disclosure
This educational event is supported by
Abbott Nutrition Health Institute,
Abbott Laboratories.

Abbott Laboratories sponsored the following research studies, the results of which will, in part, be presented here:
 “Distribution of Carotenoids in Pediatric Brain Tissue”
 “Distribution of Lipids in Human Brain Tissue: Relationships with Cognitive Function.”

Learning Objectives
1. To define that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 • Protecting, when the nervous system is most vulnerable
 • Influencing maturation
 • Improving visual function
 • Directly impacting nervous function
3. To summarize the ways in which lutein is beneficial for the developing eye and brain
Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 • Protecting, when the nervous system is most vulnerable
 • Influencing maturation
 • Improving visual function
 • Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain

The Carotenoid Funnel

Lutein (L)

Image courtesy of John Landrum.
Where Do We Obtain Our Lutein?

- Green, leafy vegetables
 - Spinach
 - Kale
 - Brussel sprouts
 - Broccoli
- Brightly colored fruits
- Egg yolk and egg products, including baked goods
- Corn products, including cereals
- Breast milk and supplemented formulas

Infant Diet vs. Infant Brain, Percent Total Carotenoids

Dietary Carotenoids (NHANES 1988-1994, 2-11 mo)
- Lutein
- Zeaxanthin
- Crypto
- a-caro
- b-caro
- lyco

Brain Carotenoids (0-11 mo)
- 59% No A-carotene
- 16% Other

Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 - Protecting, when the nervous system is most vulnerable
 - Influencing maturation
 - Improving visual function
 - Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain

Retinal Fundus

Retina: most metabolically active tissue in the body

Lipofuscin, a Marker of Aging, Increases Rapidly During Infancy

Lipofuscin content in the total RPE plotted as a function of age ($p < 0.001$).
From Wing et al., 1978.
Oxidation Reactions

Light
Photosensitizer + O₂ → Lipid Peroxidation

Photosensitizer + O₂ → ¹O₂ → ³O₂

Lutein Embeds in Retinal Cell Membranes
Lutein stabilizes cellular membranes and serves as an antioxidant
Sujak et al, 2002.

Infant Retinas May be More Susceptible to Oxidative Damage
Oxidation Reactions

![Oxidation Reactions Diagram]

Blue Light Hazard

![Blue Light Hazard Diagram]

L + Z Supplementation Protects the Macula Against Blue Light Damage

In animals fed a normal diet containing xanthophylls, with a normal macula, more energy is needed to produce a lesion in the fovea. In depleted animals, the fovea has lost protection.

Barrie, Neuringer, et al., 2005, IOVS, 46, 1770.
Implications for Young Retinas:

The retinas of children accumulate lipofuscin quickly due to relatively transparent lenses.

Clinically Significant Signs of Sun Damage Manifest in Childhood.

FIGURE 1. Left: normal-inteproal eye of a 13-year-old boy with no established pathogenesis. (Left) The central photograph demonstrates the established progression. (Right) The corresponding UV-fluorescence photographs illustrate the presence of the pigments.

Subjects: 71 Australian children, 3-15 years
Results: 32% had increased fluorescence consistent with significant ocular sun damage

Ultraviolet photography to detect signs of early sun damage in the eye of school-aged children.

Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 • Protecting, when the nervous system is most vulnerable
 • Influencing maturation
 • Improving visual function
 • Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain
Lutein and zeaxanthin are concentrated in an area of the retina that rapidly develops during the first year of life.

Maturational Events:
Development of the Foveal Pit

Maturational Events:
Elongation of the Cone Photoreceptor Outer Segments
Maturational Events:
Increasing Cone Density During Foveola Development

Birth
19,000 cone/mm²

15 Mos.
41,000 cone/mm²

45 Mos.
112,000 cone/mm²

Maturation: monkeys raised on xanthophyll-free (low n-3) diets have distinct and significant changes within the retinal pigment epithelium

Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue.
2. To illustrate the various roles of lutein in the nervous system, such as:
 - Protecting, when the nervous system is most vulnerable
 - Influencing maturation
 - Improving visual function
 - Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain

- The enhancement of contrast.
- The enhancement of detail by the absorption of ‘blue haze.’
- To promote comfort by the reduction of glare and dazzle.

Contrast Enhancement, Across the Lifespan

Relations to Lutein

Macular Pigment is Related to Disability Glare (r = 0.76)

Effect of L + Z (12 mg Daily) Supplementation on Disability Glare Thresholds

Macular Pigment is Directly Correlated ($r = 0.80$) with Faster Functional Recovery by Photoreceptors

Sample Size (N = 40): Effect of L + Z (12 mg Daily) Supplementation on Photostress Recovery Times
Five seconds, the reduction of PRT at the highest MPOD increase, is equivalent to about 440 feet, when driving at 60 mph.

<table>
<thead>
<tr>
<th>Speed, MPH</th>
<th>30</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance driven, feet</td>
<td>132</td>
<td>264</td>
<td>396</td>
</tr>
<tr>
<td>3</td>
<td>176</td>
<td>352</td>
<td>528</td>
</tr>
<tr>
<td>4</td>
<td>220</td>
<td>440</td>
<td>660</td>
</tr>
</tbody>
</table>

Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 - Protecting, when the nervous system is most vulnerable
 - Influencing maturation
 - Improving visual function
 - Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain

Amblyopia: errors in visual input lead to changes in visual cortex
What’s in a Neuron?

- Fatty acids
 (cell membranes, myelin)
- Carotenoids and other nutritional components
 (cell membranes, microtubules)
- Electrolytes (sodium, calcium, potassium, etc.)
- Lipid soluble vitamins
 (cell membrane)
- Protein, Water, Sugars
 (cytoskeleton)
- Water soluble vitamins
 (aqueous compartments)

Lutein Influences Neural Communication

- Gap junctions: permit intercellular signaling
- Lutein enhances gap junction communication
Macular pigment is related to fixed and variable reaction time.

Renzi, et al. in preparation.

MP Density is Related to CFF

Hammond & Wooten, 2005; Renzi & Hammond, 2010

tCSF Strongly Declines When Measured at High Frequencies in the Fovea \((r = -0.55, p < 0.0001) \)

Visible Even at Low Frequency

Younger adults

Older adults

Renzi, et al. in preparation.

The Relation Between MP and Temporal Visual Thresholds ($r = -0.31, p < 0.015$)

MP and Scotopic Noise ($n = 40, r = -0.38, p<0.01$)

Zimmer, Hammond. 2007.
Learning Objectives

1. To recognize that lutein is a dietary carotenoid, present in nervous tissue
2. To illustrate the various roles of lutein in the nervous system, such as:
 - Protecting, when the nervous system is most vulnerable
 - Influencing maturation
 - Improving visual function
 - Directly impacting nervous function
3. To synthesize the ways in which lutein is beneficial for the developing eye and brain

Macular pigment may influence the developing visual system (from retina to brain) by:

- Influencing maturation
- Altering visual input during a critical/sensitive period of visual development
- Protecting the retina during a period when the retina was particularly vulnerable
- Directly influencing the nervous system

Acknowledgements

- Billy R. Hammond, Jr. (The University of Georgia)
- John Landrum (Florida International University)
- Jim Stringham (TASC)
- Elizabeth Johnson (Jean Mayer USDA HNRCA at Tufts University)
- Emily Bovier, Melissa Dengler, Jennifer Wong, Kevin O’Brien (The University of Georgia)
- Abbott Nutrition Health Institute
- Funding Sources:
 - DSM Nutritional Products
 - Kemin Foods, LLC